Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/43802
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMoreno Carbonell, Santiagoes-ES
dc.contributor.authorSánchez Ubeda, Eugenio Franciscoes-ES
dc.contributor.authorMuñoz San Roque, Antonioes-ES
dc.date.accessioned2019-12-11T03:28:00Z-
dc.date.available2019-12-11T03:28:00Z-
dc.date.issued2020-06-01es_ES
dc.identifier.issn0169-2070es_ES
dc.identifier.urihttps://doi.org/10.1016/j.ijforecast.2019.08.008es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractDemand forecasting is and has been for years a topic of great interest in the electricity sector, being the temperature one of its major drivers. Indeed, one of the challenges when modelling the load is to choose the right temperature, or set of temperatures, for a given load time series. However, minimum research efforts have been devoted to this topic. This paper reviews the most relevant methods that were applied during the GefCom2014 electricity demand forecasting competition and presents a new approach to weather station selection, based on Genetic Algorithms, which allows finding the best combination of temperatures for any demand forecasting model, and outperforms the results of those methods. In addition, our empirical results show that using different weights to combine the temperatures, optimized using the Broyden Fletcher Goldfarb Shanno algorithm, allows achieving significant error improvements. selection and combination, Genetic Algorithms, BFGS algorithmes-ES
dc.description.abstractDemand forecasting is and has been for years a topic of great interest in the electricity sector, being the temperature one of its major drivers. Indeed, one of the challenges when modelling the load is to choose the right weather station, or set of stations, for a given load time series. However, only a few research papers have been devoted to this topic. This paper reviews the most relevant methods that were applied during the Global Energy Forecasting Competition of 2014 (GEFCom2014) and presents a new approach to weather station selection, based on Genetic Algorithms (GA), which allows finding the best set of stations for any demand forecasting model, and outperforms the results of existing methods. Furthermore its performance has also been tested using GEFCom2012 data, providing significant error improvements. Finally, the possibility of combining the weather stations selected by the proposed GA using the BFGS algorithm is briefly tested, providing promising results.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: International Journal of Forecasting, Periodo: 1, Volumen: online, Número: 2, Página inicial: 695, Página final: 712es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleRethinking weather station selection for electric load forecasting using genetic algorithmses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsLa previsión de la demanda es y ha sido durante años un tema de gran interés en el sector eléctrico, siendo la temperatura uno de sus principales motores. De hecho, uno de los retos a la hora de modelizar la demanda de energía es elegir la temperatura, o conjunto de temperaturas, más adecuadas. Sin embargo, se han dedicado pocos esfuerzos a este tema. Este artículo revisa los métodos más relevantes que se aplicaron durante el concurso de previsión de la demanda eléctrica GefCom2014 y presenta un nuevo enfoque para la selección de estaciones meteorológicas, basado en Algoritmos Genéticos, que permite encontrar la mejor combinación de temperaturas para cualquier modelo de previsión de la demanda, y supera los resultados de dichos métodos. Además, nuestros resultados empíricos muestran que el uso de diferentes pesos para combinar las temperaturas, optimizados mediante el algoritmo Broyden Fletcher Goldfarb Shanno, permite lograr mejoras significativas en el error.es-ES
dc.keywordsElectric load forecasting; Energy demand; Weather station selection; Genetic algorithms; Cross-validation; Weather station combination; BFGS algorithmen-GB
dc.identifier.doi10.1016/j.ijforecast.2019.08.008es_ES
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Moreno-Carbonell_2020_v0.pdf2,9 MBAdobe PDFVisualizar/Abrir
IIT-19-126A_preprint2,9 MBUnknownVisualizar/Abrir
IIT-19-126A_preview2,9 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.