Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/4828
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernández Rodríguez, Adriánes-ES
dc.contributor.authorFernández Cardador, Antonioes-ES
dc.contributor.authorCucala García, María Asunciónes-ES
dc.contributor.authorDomínguez Gago, Maríaes-ES
dc.contributor.authorGonsalves, Tades-ES
dc.date.accessioned2016-01-15T11:14:40Z-
dc.date.available2016-01-15T11:14:40Z-
dc.date.issued2015-08-01es_ES
dc.identifier.issn1524-9050es_ES
dc.identifier.urihttps:doi.org10.1109TITS.2015.2391831es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractMetropolitan railway operators’ strategic plans include nowadays actions to reduce energy consumption. The application of ecodriving initiatives in lines equipped with ATO (Automatic Train Operation) systems can provide important savings with low investments. Previous studies carried out under ATO framework have not considered the main uncertainties in the traffic operation: the train load and delays in the line. This paper proposes a method to design robust and efficient speed profiles to be programmed in the ATO equipment of a metro line. First, an optimal Pareto front for ATO speed profiles that are robust to changes in train load is constructed. There are two objectives: running time and energy consumption. A robust optimization technique and an alternative method based on the conservation of the shape of the speed profiles (pattern robustness) are compared. Both procedures make use of MOPSO (Multi Objective Particle Swarm Optimization) algorithm. Then, the set of speed profiles to be programmed in the ATO equipment is selected from the robust Pareto front by means of an optimization model. This model is a Particle Swarm Optimization algorithm (PSO) to minimise the total energy consumption considering the statistical information about delays in the line. This procedure has been applied to a case study. The results showed that the pattern-robustness is more restrictive and meaningful than the robust optimization technique as it provides information about shapes that are more comfortable for passengers. And the use of statistical information about delays provides additional energy savings between 3 and 14.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: IEEE Transactions on Intelligent Transportation Systems, Periodo: 1, Volumen: online, Número: 4, Página inicial: 2061, Página final: 2071es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleDesign of robust and energy efficient ATO speed profiles of metropolitan lines considering train load variations and delayses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsCommunication Based Train Control (CBTC), energy saving, multi objective particle swarm optimization (MOPSO), subway systems, train load variations, train operation, uncertaintyen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-15-013A.pdf1,48 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.