Please use this identifier to cite or link to this item: http://hdl.handle.net/11531/4851
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Jian Lianges-ES
dc.contributor.authorJiménez Octavio, Jesús Ramónes-ES
dc.contributor.authorWei, Chenges-ES
dc.contributor.authorShabana, Ahmed A.es-ES
dc.date.accessioned2016-01-15T11:14:55Z-
dc.date.available2016-01-15T11:14:55Z-
dc.date.issued2015-03-01es_ES
dc.identifier.issn1555-1423es_ES
dc.identifier.urihttps:doi.org10.11151.4027836es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThe objective of this investigation is to develop a low order continuum-based liquid sloshing model that can be successfully integrated with multibody system (MBS) algorithms. The liquid sloshing model proposed in this investigation allows for capturing the effect of the distributed inertia and viscosity of the fluid. The fluid viscous forces are defined using the Navier-Stokes equations. In order to demonstrate the use of the approach presented in this study, the assumption of an incompressible Newtonian fluid is considered with a total Lagrangian approach. Fluid properties such as the incompressibility condition are formulated using a penalty method. The low order model that captures the effect of the distributed fluid inertia on the vehicle dynamics is developed in this investigation using the floating frame reference (FFR) formulation. The use of this approach allows for developing an inertia-variant fluid model that accounts for the dynamic coupling between different modes of the fluid displacements. The matrix of position vector gradients and its derivative are formulated using the FFR kinematic description. The position and velocity gradient tensors are used to define the Navier-Stokes stress forces. The proposed liquid sloshing model is integrated with a MBS railroad vehicle model in which the railwheel interaction is formulated using a 3D elastic contact formulation that allows for the wheelrail separation. Several simulation scenarios are used to examine the effect of the distributed liquid inertia on the motion of the railroad vehicle. The results, obtained using the sloshing model, are compared with the results obtained using a rigid body vehicle model. The comparative numerical study presented in this investigation shows that the effect of the sloshing tends to increase the possibility of wheelrail separation as the forward velocity increases, thereby increasing the possibility of derailments at these relatively high speeds.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Journal of Computational and Nonlinear Dynamics, Periodo: 1, Volumen: online, Número: 2, Página inicial: 021022-1, Página final: 021022-10es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleLow order continuum-based liquid sloshing formulation for vehicle system dynamicses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsliquid sloshing, floating frame of reference, total Lagrangian finite element formulation, rail road vehicle systems, multibody system dynamicsen-GB
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
IIT-14-108A.pdf2,78 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.