Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/4894
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAlvar Miró, Manueles-ES
dc.contributor.authorRodríguez Calvo, Andreaes-ES
dc.contributor.authorSánchez Miralles, Alvaroes-ES
dc.contributor.authorArranz Domingo, Álvaroes-ES
dc.date.accessioned2016-01-15T11:15:24Z-
dc.date.available2016-01-15T11:15:24Z-
dc.date.issued2014-07-01es_ES
dc.identifier.issn0932-8092es_ES
dc.identifier.urihttps:doi.org10.1007s00138-013-0550-9es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractComputer vision has been a widely developed research area in the last years, and it has been used for a broad range of applications, including surveillance systems. In the pursuit of an autonomous and smart motion detection system, a reliable segmentation algorithm is required. The main problems of present segmentation solutions are their high execution time and the lack of robustness against changes in the environment due to variations in lighting, shadows, occlusions or the movement of secondary objects. This paper proposes a new algorithm named Mixture of Merged Gaussian Algorithm (MMGA) that aims to achieve a substantial improvement in execution speed to enable real time implementation, without compromising the reliability and accuracy of the segmentation. The MMGA is based on the combination of a probabilistic model for the background, similar to the Mixture of Gaussian Model (MGM), with the learning processes of Real Time Dynamic Ellipsoidal Neural Networks (RTDENN) for the update of the model. The proposed algorithm has been tested for different videos and compared to the MGM and SDGM algorithms. Results show a reduction of 30 to 50 in execution times. Furthermore, the segmentation is more robust against the effect of noise and adapts faster to lighting changes.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Machine Vision and Applications, Periodo: 1, Volumen: online, Número: 5, Página inicial: 1133, Página final: 1144es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleMixture of merged gaussian algorithm using RTDENNes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsComputer vision · video surveillance · object detection · image motion analysis · object segmentation · motion detection · mixture of Gaussian model · Real Time Dynamic Ellipsoidal neural networken-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-13-126A.pdf801,96 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.