Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/50501
Título : Decision support methods for large-scale flexible transmission expansion planning
Autor : Ramos Galán, Andrés
Lumbreras Sancho, Sara
Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)
Palabras clave : 12 Matemáticas;1207 Investigación operativa;120707 Programación entera;120713 Planificación;1208 Probabilidad;120808 Procesos estocásticos
Fecha de publicación : 2014
Resumen : In order to integrate the new generation that will be installed in the coming decades, it will be necessary to upgrade the existing transmission network. Transmission Expansion Planning (TEP) is a complex problem in itself that has been further challenged in the current environment. We develop techniques to support decision making in this context. We make contributions in modeling (such as our compact HVDC formulation), problem resolution (such as semi-relaxed cuts) and in the interpretation of results (such as our candidate develop a Progressive Contingency Incorporation algorithm to perform stochastic optimization where scenarios describe element failures). We develop a Real Options Valuation approach to TEP that focuses on finding flexible expansion strategies. We extend he concept of shrinkage to develop robust expansion plans. We propose a candidate discovery technique to detect and analyze potentially interesting candidate lines. Last, we develop a hybrid of Ordinal Optimization and MIP that exploits problem structure.
Descripción : Programa de Doctorado en Modelado de Sistemas de Ingeniería
URI : http://hdl.handle.net/11531/50501
Aparece en las colecciones: Tesis Doctorales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TD00084.pdfTesis Doctoral2,14 MBAdobe PDFVista previa
Visualizar/Abrir
TD00084 Autorizacion.pdfAutorización377,68 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.