Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/52068
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Lumbreras Sancho, Sara | es-ES |
dc.contributor.advisor | Ramos Galán, Andrés | es-ES |
dc.contributor.author | Elechiguerra Batlle, Daniel | es-ES |
dc.contributor.other | Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI) | es_ES |
dc.date.accessioned | 2020-10-26T08:38:20Z | |
dc.date.available | 2020-10-26T08:38:20Z | |
dc.date.issued | 2021 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/52068 | |
dc.description | Máster Universitario en Ingeniería Industrial y Máster Universitario en Sector Eléctrico - Master in the Electric Power Industry | es_ES |
dc.description.abstract | Este proyecto propone la aplicación de las técnicas de machine learning interpretable al problema del unit commitment con el fin no solo de predecir las soluciones óptimas sino también entender cómo se han obtenido dichos resultados. De este modo, el modelo podrá ser empleado para explicar el funcionamiento del problema. Para ello, se han implementado dos modelos basados en árboles de decisión con múltiples salidas, uno para las tareas de regresión, y otro para las de clasificación. El modelo de regresión se implementará construyendo un árbol de decisión, sobre cuyos nodos se entrenará una regresión lineal de una única variable, escogiendo en cada nodo la que mejores resultados ofrezca. Con este método, se pretende capturar las relaciones lineales existentes en las particiones del espacio de variables que un árbol de decisión no podría capturar, sin impactar excesivamente la interpretabilidad del modelo. Por el contrario, en el modelo de clasificación se aplicará un clustering sobre los nodos terminales con el fin de reducir el número de parámetros únicos del modelo. Esto facilitará sustancialmente su interpretación, por lo que se podrán construir árboles de mayor profundidad que en el caso de la regresión. El mismo proceso se llevará a cabo con las variables de salida, puesto que en muchas ocasiones también presentan elevadas correlaciones. Los resultados obtenidos al aplicar ambos modelos al problema del UC definido en este proyecto muestran que, en general, logran un equilibrio óptimo entre desempeño e interpretabilidad, superando habitualmente en ambos aspectos al resto de algoritmos intrínsecamente interpretables. De hecho, la precisión de estos modelos no se aleja excesivamente de la obtenida utilizando algoritmos más complejos y no interpretables. En consecuencia, los modelos implementados cumplen satisfactoriamente los objetivos que se han definido al inicio del proyecto. | es-ES |
dc.description.abstract | This project proposes the application of interpretable machine learning techniques to the unit commitment problem in order not only to predict the optimal solutions but also to understand how these results have been obtained. In this way, the model can be used to explain the performance of the problem. For this purpose, two models based on multi-output decision trees have been implemented, one for the regression tasks and another for the classification tasks. The regression model will be implemented by constructing a decision tree, on whose nodes a single-variable linear regression will be trained, choosing at each node the feature that yields the best results. This method is intended to capture the linear relationships existing in the partitions of the space of variables that a decision tree could not capture, without excessively impacting the interpretability of the model. On the contrary, in the classification model, a clustering algorithm will be applied to the terminal nodes in order to reduce the number of unique parameters of the model. This will substantially facilitate its interpretation, and thus, trees of greater depth can be constructed than in the case of regression. The same process will be carried out with the output variables since they also present high correlations on many occasions. The results obtained by applying both models to the UC problem defined in this project show that, in general, they achieve an optimal balance between performance and interpretability, usually outperforming in both aspects the rest of the intrinsically interpretable algorithms. In fact, the accuracy of these models does not depart excessively from that obtained using more complex and non-interpretable algorithms. Consequently, the implemented models satisfactorily meet the objectives defined at the beginning of the project. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | es_ES |
dc.subject | 12 Matemáticas | es_ES |
dc.subject | 1203 Ciencias de los ordenadores | es_ES |
dc.subject | 120304 Inteligencia artificial | es_ES |
dc.subject.other | H62-electrotecnica (MII-E) | es_ES |
dc.title | Interpretable Unit Commitment | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | es_ES |
dc.keywords | Unit commitment, Machine learning interpretable, Árbol de decisión, Model tree, Regresión lineal, Clustering, Operación del sistema eléctrico | es-ES |
dc.keywords | Unit commitment, Interpretable machine learning, Decision tree, Model tree, Linear regression, Clustering, Power system operation | en-GB |
Aparece en las colecciones: | H62-Trabajos Fin de Máster |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TFM - Elechiguerra Batlle, Daniel.pdf | Trabajo Fin de Máster | 2,57 MB | Adobe PDF | Visualizar/Abrir |
Firmas (Anexo I) SL AR.pdf | Autorización | 19,75 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.