Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5210
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLatorre Canteli, Jesús Maríaes-ES
dc.contributor.authorCerisola Lopez De Haro, Santiagoes-ES
dc.contributor.authorRamos Galán, Andréses-ES
dc.contributor.authorPalacios Hielscher, Rafaeles-ES
dc.date.accessioned2016-01-15T11:18:36Z-
dc.date.available2016-01-15T11:18:36Z-
dc.date.issued2009-02-01es_ES
dc.identifier.issn0254-5330es_ES
dc.identifier.urihttps:doi.org10.1007s10479-008-0476-1es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractStochastic programming usually represents uncertainty discretely by means of a scenario tree. This representation leads to an exponential growth of the size of stochastic mathematical problems when better accuracy is needed. Trying to solve the problem as a whole, considering all scenarios together, yields to huge memory requirements that surpass the capabilities of current computers. Thus, decomposition algorithms are employed to divide the problem into several smaller subproblems and to coordinate their solution in order to obtain the global optimum. This paper analyzes several decomposition strategies based on the classical Benders decomposition algorithm, and applies them in the emerging computational grid environments. Most decomposition algorithms are not able to take full advantage of all the computing power available in a grid system because of unavoidable dependencies inherent to the algorithms. However, a special decomposition method presented in this paper aims at reducing dependency among subproblems, to the point where all the subproblems can be sent simultaneously to the grid. All algorithms have been tested in a grid system, measuring execution times required to solve standard optimization problems and a real-size hydrothermal coordination problem. Numerical results are shown to confirm that this new method outperforms the classical ones when used in grid computing environments.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Annals of Operations Research, Periodo: 1, Volumen: online, Número: 1, Página inicial: 355, Página final: 373es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleAnalysis of stochastic problem decomposition algorithms in computational gridses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsStochastic programming. Linear programming. Benders decomposition. Grid computing. Performance analysisen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-09-002A.pdf418,02 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.