Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5216
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCerisola Lopez De Haro, Santiagoes-ES
dc.contributor.authorBaillo Moreno, Alvaroes-ES
dc.contributor.authorFernández López, José Maríaes-ES
dc.contributor.authorRamos Galán, Andréses-ES
dc.contributor.authorGollmer, Ralfes-ES
dc.date.accessioned2016-01-15T11:18:39Z-
dc.date.available2016-01-15T11:18:39Z-
dc.date.issued2009-02-01es_ES
dc.identifier.issn0030-364Xes_ES
dc.identifier.urihttps:doi.org10.1287opre.1080.0593es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractWe propose a stochastic unit commitment model for a power generation company that takes part in an electricity spot market. The relevant feature of this model is its detailed representation of the spot market during a whole week, including seven day-ahead market sessions and the corresponding adjustment market sessions. The adjustment market sessions can be seen as an hour-ahead market mechanism. This representation takes into account the influence that the company's decisions exert on the market-clearing price by means of a residual demand curve for each market session. We introduce uncertainty in the form of several possible spot market outcomes for each day, which leads to a weekly scenario tree. The model also represents in detail the operation of the company's generation units. The model leads to large-scale mixed linear-integer problems that are hard to solve with commercial optimizers. This suggests the use of alternative solution methods. We test four solution approaches with a realistic numerical example in the context of the Spanish electricity spot market. The first is a direct solution with a commercial optimizer, which illustrates the mentioned limitations. The second is a standard Lagrangean relaxation algorithm. The third and fourth methods are two original variants of Benders decomposition for multistage stochastic integer programs. The first Benders decomposition algorithm builds approximations for the recourse function relaxing the integrality constraints of the subproblems. The second variant strengthens these cuts by performing one iteration of the Lagrangean of each subproblem. We analyze the advantages of these four methods and compare the results.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Operations Research, Periodo: 1, Volumen: online, Número: 1, Página inicial: 32, Página final: 46es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleStochastic power generation unit commitment in electricity markets: a novel formulation and comparison of solution methodses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsProgramming; stochastic; integer; Lagrangean relaxation; Benders decomposition; productionscheduling; planningen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-09-014A.pdf233,99 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.