Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5353
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSánchez Miralles, Alvaroes-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.date.accessioned2016-01-15T11:19:54Z-
dc.date.available2016-01-15T11:19:54Z-
dc.date.issued2004-05-01es_ES
dc.identifier.issn0921-0296es_ES
dc.identifier.urihttps:doi.org10.1023B:JINT.0000034339.13257.e6es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis paper is focused on path planning in environments modelled using continuous probabilistic maps, in particular, maps where obstacles are modelled using the sum of Gaussian distributions. Potential field and roadmap based methods are suitable for these type of maps, but they have some disadvantages. In order to attenuate the disadvantages of the previous methods, a new method has been proposed which is a mixture of them. It performs path planning based on a potential field taking into account a roadmap as a source of potential. Besides, some experiments have been done in order to compare the performance of them.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Journal of Intelligent & Robotic Systems, Periodo: 1, Volumen: online, Número: 1, Página inicial: 89, Página final: 102es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleGlobal path planning in Gaussian probabilistic mapses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsRoadmap, potential field, probabilistic maps, path planning, Gaussian distribution, neural networken-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-03-078A.pdf328,67 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.