Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5516
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorAndrade Vieira, Rodrigo Josées-ES
dc.date.accessioned2016-01-15T11:26:29Z-
dc.date.available2016-01-15T11:26:29Z-
dc.date.issued2012-11-06es_ES
dc.identifier.urihttp://hdl.handle.net/11531/5516-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractA wind turbine is affected during its life by several external and internal conditions that can induce failure modes, or at least, contribute to the presence of one or more symptoms that can cause a certain amount of stress in its components and therefore facilitate the development of such failure modes. This paper presents a new method able to estimate the health condition of components in a wind turbine based on the on-line information collected about their observable lives. The proposed method uses the information coming in real-time in order to characterize risk indicators for failure modes of the main components of a wind turbine operating under different normal previously fitted with real data about the typical life of a component carrying out its functions within dynamically rescheduled according to the observed values of the risk indicators in a component using the resources that are really needed. These are the main foundations for a new maintenance model able to integrate in a natural way, information coming from the operation and maintenance of a component, trying to keep the availability of the asset, and hence its value in use, as high as possible. Some real examples of application ot these new concepts in components of a wind turbine will be described.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherSin editorial (Cranfield, Reino Unido)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 1st International Conference on Through-life Engineering Services - TESConf 2012, Página inicial: 269-276, Página final: 276es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleMethod for estimating risk indicators for failure modes in a wind turbine and their use for rescheduling the planned maintenancees_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsWind turbine diagnosis, maintenance, normal behaviour models, anomaly detection, failure mode risk indicatoren-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-12-132A.pdf2,69 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.