Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/55340
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Arroyo Barrigüete, José Luis | es-ES |
dc.contributor.author | Carabias López, Susana | es-ES |
dc.contributor.author | Curto González, Tomás | es-ES |
dc.contributor.author | Hernández Estrada, Adolfo | es-ES |
dc.date.accessioned | 2021-04-14T11:56:18Z | - |
dc.date.available | 2021-04-14T11:56:18Z | - |
dc.date.issued | 15/04/2021 | es_ES |
dc.identifier.issn | 2227-7390 | es_ES |
dc.identifier.uri | https://doi.org/10.3390/ math9080870 | es_ES |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | - | es-ES |
dc.description.abstract | The portability of predictive models of academic performance has been widely studied in the field of learning platforms, but there are few studies in which the results of previous evaluations are used as factors. The aim of this work was to analyze portability precisely in this context, where preceding performance is used as a key predictor. Through a study designed to control the main confounding factors, the results of 170 students evaluated over two academic years were analyzed, developing various predictive models for a base group (BG) of 39 students. After the four best models were selected, they were validated using different statistical techniques. Finally, these models were ap-plied to the remaining groups, controlling the number of different factors with respect to the BG. The results show that the models’ performance varies consistently with what was expected: as they move away from the BG (fewer common characteristics), the specificity of the four models tends to decrease. | en-GB |
dc.format.mimetype | application/vnd.openxmlformats-officedocument.wordprocessingml.document | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | Creative Commons Reconocimiento-NoComercial-SinObraDerivada España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | es_ES |
dc.source | Revista: Mathematics, Periodo: 1, Volumen: -, Número: , Página inicial: 1, Página final: 15 | es_ES |
dc.subject.other | Innovación docente y Analytics (GIIDA) | es_ES |
dc.title | Portability of Predictive Academic Performance Models: An Empirical Sensitivity Analysis | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | - | es-ES |
dc.keywords | mathematics education; university teaching; academic success; quantitative research; predictive models; portability | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
Doc4.docx | 11,71 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.