Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5548
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGascón González, Albertoes-ES
dc.contributor.authorSánchez Ubeda, Eugenio Franciscoes-ES
dc.date.accessioned2016-01-15T11:26:48Z-
dc.date.available2016-01-15T11:26:48Z-
dc.date.issued2011-11-11es_ES
dc.identifier.urihttp://hdl.handle.net/11531/5548-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractDespite the conflicting nature of low-complexity models versus error minimization in machine learning problems, the application of multi-objective learning algorithms is only recently acquiring an evident importance. In this article, an approach for piecewise linear regression is discussed. In particular, a multiobjective Genetic Algorithm is applied to creating a Pareto set of models, built by minimizing both the structural complexity of the models and the squared error of the output. Selection over this set of models is also discussed and one case example is presented that shows the performance of the algorithm. Moreover, a real case of daily temperature regression is studied. It can be concluded that the algorithm is capable of providing a near-optimal set of models that exhibit low regression errors and good generalization performance.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherSin editorial (Tenerife, España)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: XIV Conferencia de la Asociación Española para la Inteligencia Artificial - CAEPIA 2011, Página inicial: 11, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleApplication of multi-objective genetic algorithms to fitting piecewise linear modelses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-11-188A.pdf3,18 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.