Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/55516
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorIzquierdo Alonso, José Les-ES
dc.contributor.authorAncochea Bermúdez, Julioes-ES
dc.contributor.authorHernández Medrano, Ignacioes-ES
dc.contributor.authorTello Guijarro, Jorgees-ES
dc.contributor.authorPorras Chavarino, Albertoes-ES
dc.contributor.authorSerrano Olmedo, Marisaes-ES
dc.contributor.authorLumbreras Sancho, Saraes-ES
dc.contributor.authordel Río Bermúdez, Carloses-ES
dc.contributor.authorMarchesseau, Stephaniees-ES
dc.contributor.authorSalcedo Ramos, Ignacioes-ES
dc.contributor.authorMartínez, Andreaes-ES
dc.contributor.authorMaté Ruiz, Claudiaes-ES
dc.contributor.authorCollazo Carrera, Sergio Sergioes-ES
dc.contributor.authorBarea Mendoza, Jesúses-ES
dc.contributor.authorVillamayor Delgado, Maríaes-ES
dc.contributor.authorUrda Martínez Aedo, Antonioes-ES
dc.contributor.authorde la Pinta, Carolinaes-ES
dc.contributor.authorZubizarreta, Imanoles-ES
dc.contributor.authorGonzález Fernández, Yolandaes-ES
dc.contributor.authorMenke, Sebastianes-ES
dc.contributor.authorSoriano Ortiz, Joan B.es-ES
dc.date.accessioned2021-04-23T13:40:59Z-
dc.date.available2021-04-23T13:40:59Z-
dc.date.issued28/10/2020es_ES
dc.identifier.issn1438-8871es_ES
dc.identifier.uri10.2196/21801es_ES
dc.identifier.urihttp://hdl.handle.net/11531/55516-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstract<p> <p style="text-align:justify"><p><strong>Background </strong></p> Many factors involved in the onset and clinical course of the ongoing COVID-19 pandemic are still unknown. Although big data analytics and artificial intelligence are widely used in the realms of health and medicine, researchers are only beginning to use these tools to explore the clinical characteristics and predictive factors of patients with COVID-19. </p> <p><strong>Objective </strong></p>Our primary objectives are to describe the clinical characteristics and determine the factors that predict intensive care unit (ICU) admission of patients with COVID-19. Determining these factors using a well-defined population can increase our understanding of the real-world epidemiology of the disease. <p><strong>Methods </strong></p> We used a combination of classic epidemiological methods, natural language processing (NLP), and machine learning (for predictive modeling) to analyze the electronic health records (EHRs) of patients with COVID-19. We explored the unstructured free text in the EHRs within the Servicio de Salud de Castilla-La Mancha (SESCAM) Health Care Network (Castilla-La Mancha, Spain) from the entire population with available EHRs (1,364,924 patients) from January 1 to March 29, 2020. We extracted related clinical information regarding diagnosis, progression, and outcome for all COVID-19 cases. <p><strong>Results </strong></p>A total of 10,504 patients with a clinical or polymerase chain reaction–confirmed diagnosis of COVID-19 were identified; 5519 (52.5%) were male, with a mean age of 58.2 years (SD 19.7). Upon admission, the most common symptoms were cough, fever, and dyspnea; however, all three symptoms occurred in fewer than half of the cases. Overall, 6.1% (83/1353) of hospitalized patients required ICU admission. Using a machine-learning, data-driven algorithm, we identified that a combination of age, fever, and tachypnea was the most parsimonious predictor of ICU admission; patients younger than 56 years, without tachypnea, and temperature <39 degrees Celsius (or >39 ºC without respiratory crackles) were not admitted to the ICU. In contrast, patients with COVID-19 aged 40 to 79 years were likely to be admitted to the ICU if they had tachypnea and delayed their visit to the emergency department after being seen in primary care. <p><strong>Conclusions </strong></p> Our results show that a combination of easily obtainable clinical variables (age, fever, and tachypnea with or without respiratory crackles) predicts whether patients with COVID-19 will require ICU admission.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Journal of Medical Internet Research, Periodo: 1, Volumen: online, Número: 10, Página inicial: e21801-1, Página final: e21801-13es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleClinical characteristics and prognostic factors for icu admission of patientswith covid-19: a retrospective study using machine learning and natural language processinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsartificial intelligence; big data; COVID-19; electronic health records; tachypnea; SARS-CoV-2; predictive modelen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.