Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5683
Título : Robust solutions with fuzzy linear chance constrained programming
Autor : Campos Fernández, Francisco Alberto
Villar Collado, José
Fecha de publicación : 11-oct-2003
Editorial : Sin editorial (León, España)
Resumen : 
It is well known that optimization problems should consider the uncertainty of the input information to attain robust solutions. Although probability theory is the most extended uncertainty model, when input data are expressed in vague or fuzzy terms, or when statistical information is not available, possibility theory arises as a very suitable uncertainty model. This paper proposes two different criteria to obtain robust solutions for linear optimization problems when the objective coefficients are modeled with possibility distributions. Chance constrained programming is used, leading to equivalent crisp optimization problems, which can be solved by commercial optimization software. A case example is described to illustrate the use of the proposed approach.
Descripción : Capítulos en libros
URI : http://hdl.handle.net/11531/5683
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-03-052A.pdf297,29 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.