Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5684
Título : Training Neural Networks for Reading Handwritten Amounts on Checks
Autor : Palacios Hielscher, Rafael
Gupta, Amar
Fecha de publicación : 2-ago-2004
Editorial : Sin editorial (Toulouse, Francia)
Resumen : 
While reading handwritten text accurately is a difficult task for computers, the conversion of handwritten papers into digital format is necessary for automatic processing. Since most bank checks are handwritten, the number of checks is very high, and manual processing involves significant expenses, many banks are interested in systems that can read check automatically. This paper presents several approaches to improve the accuracy of neural networks used to read unconstrained numerals in the courtesy amount field of bank checks.
Descripción : Capítulos en libros
URI : http://hdl.handle.net/11531/5684
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-02-048A.pdf456,91 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.