Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5689
Título : Stochastic model of residual demand curves with decision trees.
Autor : Ugedo Álvarez-Ossorio, Alejandro
Lobato Miguélez, Enrique
Franco Ugidos, Álvaro
Rouco Rodríguez, Luis
Fernández Caro, Joaquín
de Benito, Julián
Chofre Álvarez, Javier
de La Hoz Ardiz, Jorge
Fecha de publicación : 13-jul-2003
Editorial : Sin editorial (Toronto, Canadá)
Resumen : 
Generating firms operating in deregulated markets need strategic bidding procedures to maximize their expected profits. In some electricity markets, due to the number and size of the participants, the clearing price may be affected by the production supplied to the market. To model this effect, the residual demand curve (RDC) is considered. This paper proposes a methodology based on decision trees to estimate the probabilistic RDC that a generating agent faces in each hourly period of the market. The method explains the behavior of the RDC patterns (obtained through clustering techniques) by a set of factors (linear combinations of explanatory variables) determined by the statistical technique factor analysis. A decision tree is built to compute the probability of each RDC pattern, taking as input estimations of the numerical value of the explanatory factors. In addition, the paper describes the stochastic programming formulation of the RDC patterns to obtain optimal bidding curves. The methodology proposed is illustrated with a case study applied to the first intradaily market of the Spanish electricity market.
Descripción : Capítulos en libros
URI : http://hdl.handle.net/11531/5689
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-03-044A.pdf430,92 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.