Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/5689
Título : | Stochastic model of residual demand curves with decision trees. |
Autor : | Ugedo Álvarez-Ossorio, Alejandro Lobato Miguélez, Enrique Franco Ugidos, Álvaro Rouco Rodríguez, Luis Fernández Caro, Joaquín de Benito, Julián Chofre Álvarez, Javier de La Hoz Ardiz, Jorge |
Fecha de publicación : | 13-jul-2003 |
Editorial : | Sin editorial (Toronto, Canadá) |
Resumen : | Generating firms operating in deregulated markets need strategic bidding procedures to maximize their expected profits. In some electricity markets, due to the number and size of the participants, the clearing price may be affected by the production supplied to the market. To model this effect, the residual demand curve (RDC) is considered. This paper proposes a methodology based on decision trees to estimate the probabilistic RDC that a generating agent faces in each hourly period of the market. The method explains the behavior of the RDC patterns (obtained through clustering techniques) by a set of factors (linear combinations of explanatory variables) determined by the statistical technique factor analysis. A decision tree is built to compute the probability of each RDC pattern, taking as input estimations of the numerical value of the explanatory factors. In addition, the paper describes the stochastic programming formulation of the RDC patterns to obtain optimal bidding curves. The methodology proposed is illustrated with a case study applied to the first intradaily market of the Spanish electricity market. |
Descripción : | Capítulos en libros |
URI : | http://hdl.handle.net/11531/5689 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-03-044A.pdf | 430,92 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.