Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/5717
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBesada Juez, Jesus Manueles-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.date.accessioned2016-01-15T11:28:24Z-
dc.date.available2016-01-15T11:28:24Z-
dc.date.issued2002-08-14es_ES
dc.identifier.urihttp://hdl.handle.net/11531/5717-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractThis paper proposes a new method for the extraction of knowledge from a trained type feed-forward neural network. The new knowledge extracted is expressed by fuzzy rules directly from a sensibility analysis between the inputs and outputs of the relationship that model the neural network. This easy method of extraction is based on the similarity of a fuzzy set with the derivative of the tangent hyperbolic function used as an activation function in the hidden layer of the neural network. The analysis performed is very useful, not only for the extraction of knowledge, but also to know the importance of every rule extracted in the whole knowledge and, furthermore, the importance of every input stimulating the neural network.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherSin editorial (Madrid, España)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: International Conference on Artificial Neural Networks - ICANN 2002, Página inicial: 395-400, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleExtraction of fuzzy rules using sensibility analysis in a neural networkes_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsNeuro-fuzzy models, rule extraction, sensibility analysis, knowledge discoveringen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-02-003A.pdf191,65 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.