Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/58099
Título : Low-cost electronics for automatic classification and permittivity estimation of glycerin solutions using a dielectric resonator sensor and machine learning techniques
Autor : Martínez Beltrán, María Jesús
Monteagudo Honrubia, Miguel
Matanza Domingo, Javier
Herraiz Martínez, Francisco Javier
Giannetti, Romano
, Escuela Universitaria de Enfermería y Fisioterapia
Fecha de publicación : 2-abr-2023
Resumen : 
Glycerin is a versatile organic molecule widely used in the pharmaceutical, food, and cosmetic industries, but it also has a central role in biodiesel refining. This research proposes a dielectric resonator (DR) sensor with a small cavity to classify glycerin solutions. A commercial VNA and a novel low-cost portable electronic reader were tested and compared to evaluate the sensor performance. Within a relative permittivity range of 1 to 78.3, measurements of air and nine distinct glycerin concentrations were taken. Both devices achieved excellent accuracy (98–100) using Principal Component Analysis (PCA) and Support Vector Machine (SVM). In addition, permittivity estimation using Support Vector Regressor (SVR) achieved low RMSE values, around 0.6 for the VNA dataset and between 1.2 for the electronic reader. These findings prove that low-cost electronics can match the results of commercial instrumentation using machine learning techniques.
Descripción : Artículos en revistas
URI : https:doi.org10.3390s23083940
ISSN : 1424-8220
Aparece en las colecciones: KFS-Guías Docentes

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Guía Docente.pdf174,53 kBAdobe PDFVista previa
Visualizar/Abrir
IIT-23-055R6,64 MBUnknownVisualizar/Abrir
IIT-23-055R_preview2,88 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.