Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/58166
Título : Bias characterization, assessment, and mitigation in location-based recommender systems
Autor : Pintor Pirzkall, Heike Clara
Sánchez Pérez, Pablo
Bellogín, Alejandro
Boratto, Ludovico
, Departamento de Traducción e Interpretación y Comunicación Multilingüe
Fecha de publicación : 1-sep-2023
Resumen : 
Location-Based Social Networks stimulated the rise of services such as Location-based Recommender Systems. These systems suggest to users points of interest (or venues) to visit when they arrive in a specific city or region. These recommendations impact various stakeholders in society, like the users who receive the recommendations and venue owners. Hence, if a recommender generates biased or polarized results, this affects in tangible ways both the experience of the users and the providers’ activities. In this paper, we focus on four forms of polarization, namely venue popularity, category popularity, venue exposure, and geographical distance. We characterize them on different families of recommendation algorithms when using a realistic (temporal-aware) offline evaluation methodology while assessing their existence. Besides, we propose two automatic approaches to mitigate those biases. Experimental results on real-world data show that these approaches are able to jointly improve the recommendation effectiveness, while alleviating these multiple polarizations.
Descripción : Artículos en revistas
URI : https:doi.org10.1007s10618-022-00913-5
ISSN : 1384-5810
Aparece en las colecciones: H57-Guías Docentes

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Guía Docente.pdf121,58 kBAdobe PDFVista previa
Visualizar/Abrir
IIT-23-024R1,81 MBUnknownVisualizar/Abrir
IIT-23-024R_preview2,86 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.