Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/58181
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Fernandes Ribeiro, Ana Sofía | - |
dc.contributor.author | García Duarte, Lucia | es-ES |
dc.contributor.author | Cifuentes Quintero, Jenny Alexandra | es-ES |
dc.contributor.author | Marulanda García, Geovanny Alberto | es-ES |
dc.contributor.other | Universidad Pontificia Comillas, Escuela Universiaria de Enfermería Y Fisioterapia | es_ES |
dc.date.accessioned | 2021-07-16T08:12:03Z | - |
dc.date.available | 2021-07-16T08:12:03Z | - |
dc.date.issued | 2023-05-01 | es_ES |
dc.identifier.issn | 1436-3240 | es_ES |
dc.identifier.uri | https:doi.org10.1007s00477-022-02358-0 | es_ES |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | Time series forecasting of meteorological variables, such as the hourly air temperature, has multiple benefits for industry, agriculture, and the environment. Due to the high accuracy required for the associated short-term predictions, traditional methods cannot satisfy the requirements and generally ignore spatial dependencies. This paper proposes a deep Graph Convolutional Long Short Term Memory Neural Network (GCN-LSTM) technique to tackle the time series prediction problem in air temperature forecasting. In the proposed methodology, temporal and spatial-based imputation approaches have been employed to recover the weather variables missing values. The proposed approach is validated using real, open weather data from 37 meteorological stations in Spain. Performed analysis indicates that GCN-LSTM showed superior performance when compared with various state-of-the-art Deep Learning based models found in the literature, resulting in a more robust and computationally efficient model for forecasting air temperature in many meteorological stations simultaneously. | en-GB |
dc.format.mimetype | application/octet-stream | es_ES |
dc.language.iso | en-GB | es_ES |
dc.source | Revista: Stochastic Environmental Research and Risk Assessment, Periodo: 1, Volumen: online, Número: 5, Página inicial: 1649, Página final: 1667 | es_ES |
dc.subject | UNESCO::32 Medicina::3201 Ciencias clínicas::320199 Otras especialidades (Enfermería) | es_ES |
dc.subject | UNESCO::32 Medicina::3201 Ciencias clínicas::320107 Geriatría | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) - Innovación docente y Analytics (GIIDA) | es_ES |
dc.title | Short-term spatio-temporal forecasting of air temperatures using deep graph convolutional neural networks | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Air temperature forecasting; Short-term forecasting; Deep learning; Deep graph convolutional neural networks; Missing values imputation | en-GB |
Aparece en las colecciones: | KEN-Trabajos Fin de Grado |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
PFG001249.pdf | Proyecto Fin de Grado | 591,15 kB | Adobe PDF | Visualizar/Abrir Request a copy |
PFG001249 Autorizacion.pdf | Autorización | 597,52 kB | Adobe PDF | Visualizar/Abrir Request a copy |
IIT-22-262R_preview | 2,87 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.