Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/58181
Título : Short-term spatio-temporal forecasting of air temperatures using deep graph convolutional neural networks
Autor : Fernandes Ribeiro, Ana Sofía
García Duarte, Lucia
Cifuentes Quintero, Jenny Alexandra
Marulanda García, Geovanny Alberto
Universidad Pontificia Comillas, Escuela Universiaria de Enfermería Y Fisioterapia
Palabras clave : UNESCO::32 Medicina::3201 Ciencias clínicas::320199 Otras especialidades (Enfermería);UNESCO::32 Medicina::3201 Ciencias clínicas::320107 Geriatría
Fecha de publicación : 1-may-2023
Resumen : 
Time series forecasting of meteorological variables, such as the hourly air temperature, has multiple benefits for industry, agriculture, and the environment. Due to the high accuracy required for the associated short-term predictions, traditional methods cannot satisfy the requirements and generally ignore spatial dependencies. This paper proposes a deep Graph Convolutional Long Short Term Memory Neural Network (GCN-LSTM) technique to tackle the time series prediction problem in air temperature forecasting. In the proposed methodology, temporal and spatial-based imputation approaches have been employed to recover the weather variables missing values. The proposed approach is validated using real, open weather data from 37 meteorological stations in Spain. Performed analysis indicates that GCN-LSTM showed superior performance when compared with various state-of-the-art Deep Learning based models found in the literature, resulting in a more robust and computationally efficient model for forecasting air temperature in many meteorological stations simultaneously.
Descripción : Artículos en revistas
URI : https:doi.org10.1007s00477-022-02358-0
ISSN : 1436-3240
Aparece en las colecciones: KEN-Trabajos Fin de Grado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PFG001249.pdfProyecto Fin de Grado591,15 kBAdobe PDFVisualizar/Abrir     Request a copy
PFG001249 Autorizacion.pdfAutorización597,52 kBAdobe PDFVisualizar/Abrir     Request a copy
IIT-22-262R_preview2,87 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.