Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/62331
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cifuentes Quintero, Jenny Alexandra | es-ES |
dc.contributor.author | Yao, Yuanyuan | es-ES |
dc.contributor.author | Yan, Min | es-ES |
dc.contributor.author | Zheng, Bin | es-ES |
dc.date.accessioned | 2021-10-06T03:02:44Z | - |
dc.date.available | 2021-10-06T03:02:44Z | - |
dc.date.issued | 03/07/2020 | es_ES |
dc.identifier.issn | 1025-5842 | es_ES |
dc.identifier.uri | 10.1080/10255842.2020.1742709 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/62331 | - |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | The availability of blood transfusion has been a recurrent concern for medical institutions and patients. Efficient management of this resource represents an important challenge for many hospitals. Likewise, rapid reaction during transfusion decisions and planning is a critical factor to maximize patient care. This paper proposes a novel strategy for predicting the blood transfusion need, based on available information, by means of Restricted Boltzmann Machines (RBM). By extracting and analyzing high-level features from 4831 patient records, RBM can deal with complex patterns recognition, helping supervised classifiers in the task of automatic identification of blood transfusion requirements. Results show that a successfully classification is obtained (96.85%), based only on available information from the patient records. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.source | Revista: Computer Methods in Biomechanics and Biomedical Engineering, Periodo: 1, Volumen: online, Número: 9, Página inicial: 510, Página final: 517 | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | Blood transfusion prediction using restricted Boltzmann machines | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Blood transfusion prediction; restricted Boltzmann machines; patterns recognition | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-20-217R.pdf | 1,28 MB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.