Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/64001
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Orgaz Gil, Alberto | es-ES |
dc.contributor.author | Bello Morales, Antonio | es-ES |
dc.contributor.author | Reneses Guillén, Javier | es-ES |
dc.date.accessioned | 2021-11-19T04:01:39Z | - |
dc.date.available | 2021-11-19T04:01:39Z | - |
dc.date.issued | 2022-05-01 | es_ES |
dc.identifier.issn | 0142-0615 | es_ES |
dc.identifier.uri | https://doi.org/10.1016/j.ijepes.2021.10770 6 | es_ES |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | . | es-ES |
dc.description.abstract | In the energy transition towards a carbon-free society, the continuous changes that energy systems are experiencing, the increasing penetration of renewable generation, and the incorporation of short-term storage technologies such as batteries have increased the effort to model and predict its development and operation. In this context, power system models play a relevant role. However, to be suitable for the decision-making process, these tools should not require a massive computational effort. To overcome this challenge, this paper proposes a new methodology that reduces the temporal dimension of the problem while maintaining accurate results. This methodology is specially designed for medium-term operation of real-size power systems with a significant presence of renewable generation and storage systems. By means of a two-stage clustering algorithm, the proposed approach transforms the temporal structure of the model’s input parameters into different levels of time aggregation. This arrangement makes the problem manageable and computationally tractable. In addition, together with the newly incorporated model formulation, this methodology allows capturing at the same time the short- and medium-term variability present in power systems. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | Creative Commons Reconocimiento-NoComercial-SinObraDerivada España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | es_ES |
dc.source | Revista: International Journal of Electrical Power & Energy Systems, Periodo: 1, Volumen: online, Número: , Página inicial: 107706-1, Página final: 107706-11 | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | Modeling storage systems in electricity markets with high shares of renewable generation: a daily clustering approach | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | . | es-ES |
dc.keywords | Clustering; Energy storage systems; Optimization; Power system modeling; Temporal aggregation | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-21-194R.pdf | 2,11 MB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.