Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/68052
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBello Morales, Antonioes-ES
dc.contributor.authorBunn, Derek W.es-ES
dc.contributor.authorReneses Guillén, Javieres-ES
dc.contributor.authorMuñoz San Roque, Antonioes-ES
dc.date.accessioned2022-05-05T14:54:27Z-
dc.date.available2022-05-05T14:54:27Z-
dc.date.issued2017-06-18es_ES
dc.identifier.urihttp://hdl.handle.net/11531/68052-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractThis paper provides a focus upon forecasting electricity prices in the medium term (from a few weeks to several months ahead) in which accurate estimates of tail risks, e.g. at the 1, 5, 95 and 99, are important. Medium term forecasting and risk analysis are important for operational scheduling, fuel purchasing, trading and profit management. We extend the research on hybrid forecasting methods, which link detailed fundamental price formation models, using optimization techniques and market equilibrium considerations, with econometric re-calibration to the time series data. This paper is innovative in its use of quantile regression to undertake the recalibration and provide accurate risk estimates. It is shown that probabilistic outputs from the fundamental model add value over expected value inputs to the quantile regressions and that if the fundamental model is itself well-specified to diurnal variation through the inclusion of relevant explanatory variables such as demand or climatic conditions, then it is not necessary to undertake the quantile regressions separately for each hour of the day. A real application of the proposed methodology is successfully tested on the Spanish electric power system, in which the high penetration of intermittent wind generation creates extreme price risks. The hybrid method outperforms the more conventional fundamental model, making particular use of wind generation data in the quantile re-calibrations.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherInstitute of Electrical and Electronics Engineers Power and Energy Society; University of Manchester (Mánchester, Reino Unido)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 12th IEEE PowerTech Conference - PowerTech 2017, Página inicial: 1-1, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleMedium-term probabilistic forecasting of electricity prices: a hybrid approaches_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsElectricity prices, probabilistic forecasting, hybrid model, fundamentals, quantile regression.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-15-094A_abstract.pdf57,01 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.