Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/77418
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBeretta Custodio, Cleber Henriquees-ES
dc.contributor.authorGu, Yues-ES
dc.contributor.authorPortela González, Josées-ES
dc.date.accessioned2023-03-14T10:19:40Z-
dc.date.available2023-03-14T10:19:40Z-
dc.date.issued31/12/2022es_ES
dc.identifier.issn1577-8517es_ES
dc.identifier.urihttp://hdl.handle.net/11531/77418-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractDOI: 10.4192/1577-8517-v22_7 The COVID-19 pandemic increased uncertainty about the financial future of many organizations, and regulators alerted auditors to be increasingly skeptical in assessing an entity’s ability to continue as a going concern. An auditor’s assessment of an entity’s ability to continue as a going concern is a matter of significant judgment. This paper proposes to use machine learning to construct a Decision Tree Automated Tool, based on both quantitative financial indicators (e.g., Z-scores) and qualitative factors (e.g., partners’ judgment and assessment of industry risk given the pandemic). Considering both quantitative and qualitative factors results in a model that provides additional audit evidence for auditors in their going-concern assessment. An auditing firm in Spain used the model as a supplemental guide, and the model’s suggested results were compared to auditors’ reports to evaluate its effectiveness and accuracy. The model’s predictions were significantly similar to the auditors’ assessments, indicating a high level of accuracy, and differences between the model’s proposed outcomes and auditors’ final conclusions were investigated. This paper also provides insights for regulators on both the use of machine-learning predictive models and additional factors to be considered in future going-concern assessment research.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: International Journal of Digital Accounting Research, Periodo: 1, Volumen: online, Número: , Página inicial: 193, Página final: 226es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleDecision tree tool for auditors’ going concern assessment in Spaines_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsAudit, going concern, machine learning, decision tree, COVID19.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.