Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/7883
Título : | Anomalous scaling in a nonlocal growth model in the Kardar-Parisi-Zhang universality class |
Autor : | Castro Ponce, Mario Cuerno Rejado, Rodolfo Sánchez, A. Dominguez Adame, F. |
Fecha de publicación : | 1 |
Resumen : | We study the interface dynamics of a discrete model previously shown [A. Sanchez, M. J. Bernal, and J. M. Riveiro, Phys. Rev. E 50, R2427 (1994)] to quantitatively describe electrochemical deposition experiments. The model allows for a finite density of biased random walkers which irreversibly stick onto a substrate. There is no surface diffusion. Extensive numerical simulations indicate that the interface dynamics is unstable at early times, but asymptotically displays the scaling of the Kardar-Parisi-Zhang universality class. During the time interval in which the surface is unstable, its power spectrum is anomalous; hence, the behaviors at length scales smaller than or comparable with the system size are described by different roughness exponents. These results are expected to apply to a wide range of electrochemical deposition experiments. |
Descripción : | Artículos en revistas |
URI : | http://hdl.handle.net/11531/7883 |
ISSN : | 1539-3755 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.