Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/7883
Título : Anomalous scaling in a nonlocal growth model in the Kardar-Parisi-Zhang universality class
Autor : Castro Ponce, Mario
Cuerno Rejado, Rodolfo
Sánchez, A.
Dominguez Adame, F.
Fecha de publicación :  1
Resumen : 
We study the interface dynamics of a discrete model previously shown [A. Sanchez, M. J. Bernal, and J. M. Riveiro, Phys. Rev. E 50, R2427 (1994)] to quantitatively describe electrochemical deposition experiments. The model allows for a finite density of biased random walkers which irreversibly stick onto a substrate. There is no surface diffusion. Extensive numerical simulations indicate that the interface dynamics is unstable at early times, but asymptotically displays the scaling of the Kardar-Parisi-Zhang universality class. During the time interval in which the surface is unstable, its power spectrum is anomalous; hence, the behaviors at length scales smaller than or comparable with the system size are described by different roughness exponents. These results are expected to apply to a wide range of electrochemical deposition experiments.
Descripción : Artículos en revistas
URI : http://hdl.handle.net/11531/7883
ISSN : 1539-3755
Aparece en las colecciones: Artículos

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.