Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/81741
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMontes Pita, María Josées-ES
dc.contributor.authorGuédez, Rafaeles-ES
dc.contributor.authorDSouza, David Jonathanes-ES
dc.contributor.authorLinares Hurtado, José Ignacioes-ES
dc.date.accessioned2023-08-30T10:58:28Z-
dc.date.available2023-08-30T10:58:28Z-
dc.date.issued2023-07-03es_ES
dc.identifier.issn2076-3417es_ES
dc.identifier.urihttps://doi.org/10.3390/app13137836es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstract: Solar thermal power plants are an alternative for the future energy context, allowing for a progressive decarbonisation of electricity production. One way to improve the performance of such plants is the use of supercritical CO2 power cycles. This article focuses on a solar thermal plant with a central solar receiver coupled to a partial cooling cycle, and it conducts a comparative study from both a thermal and economic perspective with the aim of optimising the configuration of the receiver. The design of the solar receiver is based on a radial configuration, with absorber panels converging on the tower axis; the absorber panels are compact structures through which a pressurised gas circulates. The different configurations analysed keep a constant thermal power provided by the receiver while varying the number of panels and their dimensions. The results demonstrate the existence of an optimal configuration that maximises the exergy efficiency of the solar subsystem, taking into account both the receiver exergy efficiency and the heliostat field optical efficiency. The evolution of electricity generation cost follows a similar trend to that of the exergy efficiency, exhibiting minimum values when this efficiency is at its maximumen-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Applied Sciences, Periodo: 1, Volumen: 13, Número: 7836, Página inicial: 1, Página final: 17es_ES
dc.subject.otherCátedra Rafael Mariño de Nuevas Tecnologías Energéticases_ES
dc.titleThermoeconomic Analysis of Concentrated Solar Power Plants Based on Supercritical Power Cycleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords-es-ES
dc.keywordssolar central receiver; supercritical carbon dioxide; supercritical partial-cooling cycle; solar thermal power plants; exergy efficiencyen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
202383075651424_APPSCI-2023.pdf3,21 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.