Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/82248
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMarulanda García, Geovanny Albertoes-ES
dc.contributor.authorCifuentes Quintero, Jenny Alexandraes-ES
dc.contributor.authorBello Morales, Antonioes-ES
dc.contributor.authorReneses Guillén, Javieres-ES
dc.date.accessioned2023-09-04T11:55:50Z-
dc.date.available2023-09-04T11:55:50Z-
dc.date.issued2023-08-21es_ES
dc.identifier.issn2048-402Xes_ES
dc.identifier.urihttps://doi.org/10.1177/0309524X23119116es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractWind power plants have gained prominence in recent decades owing to their positive environmental and economic impact. However, the unpredictability of wind resources poses significant challenges to the secure and stable operation of the power grid. To address this challenge, numerous computational and statistical methods have been proposed in the literature to forecast short-term wind power generation. However, the demand for more accurate and reliable methodologies to tackle this problem remains. In this context, this paper proposes a new hybrid framework that combines a statistical pre-processing stage with an attention-based deep learning approach to overcome the shortcomings of existing forecasting strategies in accurately predicting multi-seasonal wind power time series. The proposed ensemble model involves a data transformation stage that normalizes the data distribution, along with modeling and removing multiple seasonal patterns from the historical time-series. Considering these results, the proposed model further incorporates an LSTM Recurrent Neural Network (RNN) model with an attention mechanism, for each month of the year, to better capture the relevant temporal dependencies in the input residuals sequence. The model was trained and evaluated on hourly wind power data obtained from the Spanish electricity market, spanning the period from 2008 to 2019. Experimental results show that the proposed model outperforms well-established DL-based models, achieving lower error metrics. These findings have potential applications in energy trading, grid planning, and renewable energy management.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Wind Engineering, Periodo: 1, Volumen: Online first, Número: Online first, Página inicial: ., Página final: .es_ES
dc.subject.otherInnovación docente y Analytics (GIIDA)es_ES
dc.titleA hybrid model based on LSTM neural networks with attention mechanism for short-term wind power forecastinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderla revista no es Oaes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywords.es-ES
dc.keywordsLong short term memory, deep learning, wind power forecasting, attention mechanisms, time series decompositionen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2023828114349340_marulanda-et-al-2023-a-hybrid-mod (2).pdf2,74 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.