Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/83222
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLlauró, Albaes-ES
dc.contributor.authorFonseca Escudero, Davides-ES
dc.contributor.authorAmo-Filva, Danieles-ES
dc.contributor.authorRomero, Susanaes-ES
dc.contributor.authorAláez Martínez, Marianes-ES
dc.contributor.authorTorres Lucas, Jorgees-ES
dc.contributor.authorMartínez Felipe, Maríaes-ES
dc.date.accessioned2023-09-18T10:49:03Z-
dc.date.available2023-09-18T10:49:03Z-
dc.date.issued2023-05-04es_ES
dc.identifier.urihttps://doi.org/10.1007/978-981-99-0942-1_103es_ES
dc.descriptionCapítulos en libroses_ES
dc.description.abstract.es-ES
dc.description.abstractThe field of university dropout research is of utmost importance especially in the current context arising from the Covid-19 pandemic. Students who started their degrees in the last two years completed their pre-university studies during various phases of confinement and by combining traditional and virtual training. In this scenario, students' motivation and the way they cope with the difficulties of their first year of university are very relevant and will depend on a multitude of personal and social variables in their immediate environment. Previous studies have shown that many university students drop out of their studies early, but what factors and to what extent they affect this dropout is still a field under study. This paper focuses on the identification, classification and evaluation of a set of indicators based on teacher and tutor perception in different fields of study by applying quantitative and qualitative techniques. The results of pilot studies developed support the approach adopted, as they show how teachers can identify students at risk of dropping out at the beginning of the course and take proactive measures to monitor and motivate them, thus reducing the possibility of dropout.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherSpringer (, Singapur)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: TEEM 2022: Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality, Página inicial: 982, Página final: 990es_ES
dc.titleAcademic Analytics Applied in the Study of the Relationship Between the Initial Profile of Undergraduate Students and Early Drop-Out Rates. Defining the Variables of a Predictor Instrumentes_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderpolitica editoriales_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywords.es-ES
dc.keywordsEarly dropout, Prediction, Tutoring, First-year studentsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2025326175742438_TEEM 22.pdf244,64 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.