Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/84859
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBeretta Custodio, Cleber Henriquees-ES
dc.contributor.authorGu, Yues-ES
dc.contributor.authorPortela González, Josées-ES
dc.date.accessioned2023-11-13T16:44:10Z-
dc.date.available2023-11-13T16:44:10Z-
dc.date.issued2022-10-01es_ES
dc.identifier.issn1577-8517es_ES
dc.identifier.uri10.4192/1577-8517-v22_7es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractThe COVID-19 pandemic increased uncertainty about the financial future of many organizations, and regulators alerted auditors to be increasingly skeptical in assessing an entity’s ability to continue as a going concern. An auditor’s assessment of an entity’s ability to continue as a going concern is a matter of significant judgment. This paper proposes to use machine learning to construct a Decision Tree Automated Tool, based on both quantitative financial indicators (e.g., Zscores) and qualitative factors (e.g., partners’ judgment and assessment of industry risk given the pandemic). Considering both quantitative and qualitative factors results in a model that provides additional audit evidence for auditors in their going-concern assessment. An auditing firm in Spain used the model as a supplemental guide, and the model’s suggested results were compared to auditors’ reports to evaluate its effectiveness and accuracy. The model’s predictions were significantly similar to the auditors’ assessments, indicating a high level of accuracy, and differences between the model’s proposed outcomes and auditors’ final conclusions were investigated. This paper also provides insights for regulators on both the use of machine-learning predictive models and additional factors to be considered in future going-concern assessment research.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: International Journal of Digital Accounting Research, Periodo: 1, Volumen: 22, Número: , Página inicial: 193, Página final: 226es_ES
dc.titleDecision Tree Tool for Auditors’ Going Concern Assessment in Spaines_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsAudit, going concern, machine learning, decision tree, COVID19.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2023111217129635_1577-8517-v22_7.pdf1,6 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.