Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/86856
Título : Convex body collision detection using the signed distance function
Autor : López-Adeva Fernández-Layos, Pedro
Sánchez Merchante, Luis Francisco
Fecha de publicación : 1-may-2024
Resumen : 
We present a new algorithm to compute the minimum distance and penetration depth between two convex bodies represented by their Signed Distance Function (SDF). First, we formulate the problem as an optimization problem suitable for arbitrary non-convex bodies, and then we propose the ellipsoid algorithm to solve the problem when the two bodies are convex. Finally, we benchmark the algorithm and compare the results in collision detection against the popular Gilbert–Johnson–Keerthi (GJK) and Minkowski Portal Refinement (MPR) algorithms, which represent bodies using the support function. Results show that our algorithm has similar performance to both, providing penetration depth like MPR and, with better robustness, minimum distance like GJK. Our algorithm provides accurate and fast collision detection between implicitly modeled convex rigid bodies and is able to substitute existing algorithms in previous applications whenever the support function is replaced with the SDF.
Descripción : Artículos en revistas
URI : https:doi.org10.1016j.cad.2024.103685
ISSN : 0010-4485
Aparece en las colecciones: Artículos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.