Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87135
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRodríguez Fernández, Enriquees-ES
dc.contributor.authorSantalla Arribas, Silvia Noemíes-ES
dc.contributor.authorCastro Ponce, Marioes-ES
dc.contributor.authorCuerno Rejado, Rodolfoes-ES
dc.date.accessioned2024-02-23T13:40:04Z-
dc.date.available2024-02-23T13:40:04Z-
dc.date.issued2022-08-01es_ES
dc.identifier.issn2470-0045es_ES
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.106.024802es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractThe one-dimensional Kardar-Parisi-Zhang (KPZ) equation is becoming an overarching paradigm for the scaling of nonequilibrium, spatially extended, classical and quantum systems with strong correlations. Recent analytical solutions have uncovered a rich structure regarding its scaling exponents and fluctuation statistics. However, the zero surface tension or zero viscosity case eludes such analytical solutions and has remained ill-understood. Using numerical simulations, we elucidate a well-defined universality class for this case that differs from that of the viscous case, featuring intrinsically anomalous kinetic roughening (despite previous expectations for systems with local interactions and time-dependent noise) and ballistic dynamics. The latter may be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different conditions. We identify the ensuing set of scaling exponents in previous discrete interface growth models related with isotropic percolation, and show it to describe the fluctuations of additional continuum systems related with the noisy Korteweg–de Vries equation. Along this process, we additionally elucidate the universality class of the related inviscid stochastic Burgers equation.es-ES
dc.description.abstractThe one-dimensional Kardar-Parisi-Zhang (KPZ) equation is becoming an overarching paradigm for the scaling of nonequilibrium, spatially extended, classical and quantum systems with strong correlations. Recent analytical solutions have uncovered a rich structure regarding its scaling exponents and fluctuation statistics. However, the zero surface tension or zero viscosity case eludes such analytical solutions and has remained ill-understood. Using numerical simulations, we elucidate a well-defined universality class for this case that differs from that of the viscous case, featuring intrinsically anomalous kinetic roughening (despite previous expectations for systems with local interactions and time-dependent noise) and ballistic dynamics. The latter may be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different conditions. We identify the ensuing set of scaling exponents in previous discrete interface growth models related with isotropic percolation, and show it to describe the fluctuations of additional continuum systems related with the noisy Korteweg–de Vries equation. Along this process, we additionally elucidate the universality class of the related inviscid stochastic Burgers equation.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Physical Review E, Periodo: 1, Volumen: online, Número: 2, Página inicial: 024802-1, Página final: 024802-9es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleAnomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsphysics, mathematical models, simulation.es-ES
dc.keywordsphysics, mathematical models, simulation.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-22-154R.pdf2,04 MBAdobe PDFVisualizar/Abrir     Request a copy
IIT-22-154R_preview2,96 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.