Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87341
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMonteagudo Honrubia, Migueles-ES
dc.contributor.authorHerraiz Martínez, Francisco Javieres-ES
dc.contributor.authorMatanza Domingo, Javieres-ES
dc.date.accessioned2024-02-27T15:25:51Z-
dc.date.available2024-02-27T15:25:51Z-
dc.identifier.urihttp://hdl.handle.net/11531/87341-
dc.description.abstractes-ES
dc.description.abstractThis paper presents the application of a dielectric resonator sensor to characterize organic solvents. Two different acquisition systems were implemented to test the sensor and compare the results between a Vector Network Analyzer (VNA) and a low-cost portable electronic reader presented in this paper. Five dissolutions and air were measured within a permittivity range from 1 to 80. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to perform automatic classification achieving an accuracy close to the 100 for both systems.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleAutomatic classification and permittivity estimation of organic solvents using a dielectric resonator sensor and machine learning techniqueses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-22-112C.pdf1,4 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.