Por favor, use este identificador para citar o enlazar este ítem: 
                
    
    http://hdl.handle.net/11531/87341| Título : | Automatic classification and permittivity estimation of organic solvents using a dielectric resonator sensor and machine learning techniques | 
| Autor : | Monteagudo Honrubia, Miguel Herraiz Martínez, Francisco Javier Matanza Domingo, Javier  | 
| Resumen : | This paper presents the application of a dielectric resonator sensor to characterize organic solvents. Two different acquisition systems were implemented to test the sensor and compare the results between a Vector Network Analyzer (VNA) and a low-cost portable electronic reader presented in this paper. Five dissolutions and air were measured within a permittivity range from 1 to 80. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to perform automatic classification achieving an accuracy close to the 100 for both systems.  | 
| URI : | http://hdl.handle.net/11531/87341 | 
| Aparece en las colecciones: | Documentos de Trabajo | 
Ficheros en este ítem: 
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| IIT-22-112C.pdf | 1,4 MB | Adobe PDF | Visualizar/Abrir Request a copy | 
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.