Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87384
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMartínez López, Rocíoes-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.date.accessioned2024-02-28T09:02:14Z-
dc.date.available2024-02-28T09:02:14Z-
dc.date.issued2005-12-20es_ES
dc.identifier.urihttp://hdl.handle.net/11531/87384-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractThe rough sets theory has proved to be useful in knowledge discovery from databases, decision-making contexts and pattern recognition. However this technique has some difficulties with complex data due to its lack of flexibility and excessive dependency on the initial discretization of the continuous attributes. This paper presents the divisible rough sets as a new hybrid technique of automatic learning able to overcome the problems mentioned using a combination of variable precision rough sets with self-organizing maps and perceptrons. This new technique divides some of the equivalence classes generated by the rough sets method in order to obtain new certain rules under the data which originally were lost. The results obtained demonstrate that this new algorithm obtains a higher decision-making success rate in addition to a higher number of classified examples in the tested data sets.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.publisherSin editorial (Calcuta, India)es_ES
dc.sourceLibro: 1st International Conference on Pattern Recognition and Machine Intelligence - PReMI 2005, Página inicial: 708-713, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleDivisible rough sets based on self-organizing mapses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-05-090C171,53 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.