Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/87541
Título : | Automatic classification and permittivity estimation of glycerin solutions using a dielectric resonator sensor and machine learning techniques |
Autor : | Monteagudo Honrubia, Miguel Herraiz Martínez, Francisco Javier Matanza Domingo, Javier |
Fecha de publicación : | 13-jul-2023 |
Editorial : | IEEE Instrumentation and Measurement Society; Universiti Kuala Lumpur; Universiti Teknologi Malaysia (Kuala Lumpur, Malasia) |
Resumen : | This paper presents the application of a dielectric resonator sensor to characterize glycerin solutions. Air and nine different concentrations were measured within a relative permittivity range from 1 to 78.3. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to perform automatic classification with an 100 accuracy and the regression of both concentration and permittivity with a RMSE of 0.34 and 0.287 respectively. |
Descripción : | Capítulos en libros |
URI : | http://hdl.handle.net/11531/87541 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-23-021C.pdf | 2,08 MB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.