Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87549
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRajora, GopaL Lales-ES
dc.contributor.authorCalvo Báscones, Pabloes-ES
dc.contributor.authorMateo Domingo, Carloses-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorPalacios Hielscher, Rafaeles-ES
dc.contributor.authorBolfek, Martines-ES
dc.contributor.authorVrbicic Tendera, Dajanaes-ES
dc.contributor.authorKeko, Hrvojees-ES
dc.date.accessioned2024-03-04T15:31:26Z-
dc.date.available2024-03-04T15:31:26Z-
dc.date.issued2022-09-12es_ES
dc.identifier.urihttp://hdl.handle.net/11531/87549-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractToday, the generation, transmission, and distribution business of power systems are suffering essential and fast changes in their operative and management strategies worldwide. Some decades ago, the liberalization of the electricity markets introduced a new significant competition factor within the sector, followed by increasing demand for quality of service from customers and public administrations. More recently, the digitalization of power systems and new concepts about Smart Grids allow the collection of more and more information about the power system components. This enables recording data in a more orderly and reliable way that can be used for better operation and maintenance and, ultimately, better management of the available resources in power systems, the main idea of the Asset Management concept.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherInstitute of Electrical and Electronics Engineers Power and Energy Society; Institute of Electrical (Kuala Lumpur, Malasia)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: International Conference on Power System Technology - POWERCON 2022, Página inicial: 1-8, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleApplication of machine learning techniques for asset management and proactive analysis in power systemses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsCondition Monitoring, Intelligent Systems, Assets Management, Proactive Analytics, Power Grids.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-22-124C.pdf1,14 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.