Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87550
Título : Automatic classification and permittivity estimation of organic solvents using a dielectric resonator sensor and machine learning techniques
Autor : Monteagudo Honrubia, Miguel
Herraiz Martínez, Francisco Javier
Matanza Domingo, Javier
Fecha de publicación : 31-dic-2022
Editorial : Universidad de Málaga; Union Radio-Scientifique Internationale (Málaga, España)
Resumen : 
This paper presents the application of a dielectric resonator sensor to characterize organic solvents. Two different acquisition systems were implemented to test the sensor and compare the results between a Vector Network Analyzer (VNA) and a low-cost portable electronic reader presented in this paper. Five dissolutions and air were measured within a permittivity range from 1 to 80. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to perform automatic classification achieving an accuracy close to the 100 for both systems.
Descripción : Capítulos en libros
URI : http://hdl.handle.net/11531/87550
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-22-112C.pdf1,4 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.