Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/87550
Título : | Automatic classification and permittivity estimation of organic solvents using a dielectric resonator sensor and machine learning techniques |
Autor : | Monteagudo Honrubia, Miguel Herraiz Martínez, Francisco Javier Matanza Domingo, Javier |
Fecha de publicación : | 31-dic-2022 |
Editorial : | Universidad de Málaga; Union Radio-Scientifique Internationale (Málaga, España) |
Resumen : | This paper presents the application of a dielectric resonator sensor to characterize organic solvents. Two different acquisition systems were implemented to test the sensor and compare the results between a Vector Network Analyzer (VNA) and a low-cost portable electronic reader presented in this paper. Five dissolutions and air were measured within a permittivity range from 1 to 80. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to perform automatic classification achieving an accuracy close to the 100 for both systems. |
Descripción : | Capítulos en libros |
URI : | http://hdl.handle.net/11531/87550 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-22-112C.pdf | 1,4 MB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.