Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87976
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorCalafate, Carlos T.es-ES
dc.date.accessioned2024-04-04T14:35:54Z-
dc.date.available2024-04-04T14:35:54Z-
dc.date.issued2023-06-14es_ES
dc.identifier.issn2079-9292es_ES
dc.identifier.urihttps://doi.org/10.3390/electronics12122674es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractmbalanced datasets pose pervasive challenges in numerous machine learning (ML) applications, notably in areas such as fraud detection, where fraudulent cases are vastly outnumbered by legitimate transactions. Conventional ML methods often grapple with such imbalances, resulting in models with suboptimal performance concerning the minority class. This study undertakes a thorough examination of strategies for optimizing supervised learning algorithms when confronted with imbalanced datasets, emphasizing resampling techniques. Initially, we explore multiple methodologies, encompassing Gaussian Naive Bayes, linear and quadratic discriminant analysis, K-nearest neighbors (K-NN), support vector machines (SVMs), decision trees, and multi-layer perceptron (MLP). We apply these on a four-class spiral dataset, a notoriously demanding non-linear classification problem, to gauge their effectiveness. Subsequently, we leverage the garnered insights for a real-world credit card fraud detection task on a public dataset, where we achieve a compelling accuracy of 99.937%. In this context, we compare and contrast the performances of undersampling, oversampling, and the synthetic minority oversampling technique (SMOTE). Our findings highlight the potency of resampling strategies in augmenting model performance on the minority class; in particular, oversampling techniques achieve the best performance, resulting in an accuracy of 99.928% with a significantly low number of false negatives (21/227,451).en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Electronics, Periodo: 1, Volumen: 12, Número: 12, Página inicial: 2674, Página final: .es_ES
dc.titleOptimizing Neural Networks for Imbalanced Dataes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsneural networks; imbalanced datasets; resampling techniques; fraud detection; hyperparameter optimizationen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
electronics-12-02674-v2_dezarza_and_decurto.pdf1,92 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.