Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88024
Título : A piecewise linear regression model ensemble for large-scale curve fitting
Autor : Moreno Carbonell, Santiago
Sánchez Ubeda, Eugenio Francisco
Fecha de publicación : 1-abr-2024
Resumen : 
The Linear Hinges Model (LHM) is an efficient approach to flexible and robust one-dimensional curve fitting under stringent high-noise conditions. However, it was initially designed to run in a single-core processor, accessing the whole input dataset. The surge in data volumes, coupled with the increase in parallel hardware architectures and specialised frameworks, has led to a growth in interest and a need for new algorithms able to deal with large-scale datasets and techniques to adapt traditional machine learning algorithms to this new paradigm. This paper presents several ensemble alternatives, based on model selection and combination, that allow for obtaining a continuous piecewise linear regression model from large-scale datasets using the learning algorithm of the LHM. Our empirical tests have proved that model combination outperforms model selection and that these methods can provide better results in terms of bias, variance, and execution time than the original algorithm executed over the entire dataset.
Descripción : Artículos en revistas
URI : https:doi.org10.3390a17040147
ISSN : 1999-4893
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-088R13,6 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.