Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88119
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorRoig, Gemmaes-ES
dc.contributor.authorCalafate, Carlos T.es-ES
dc.date.accessioned2024-04-12T10:31:19Z-
dc.date.available2024-04-12T10:31:19Z-
dc.date.issued2023-11-16es_ES
dc.identifier.issn1424-8220es_ES
dc.identifier.urihttps://doi.org/10.3390/s23229225es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractWith the rise in traffic congestion in urban centers, predicting accidents has become paramount for city planning and public safety. This work comprehensively studied the efficacy of modern deep learning (DL) methods in forecasting traffic accidents and enhancing Level-4 and Level-5 (L-4 and L-5) driving assistants with actionable visual and language cues. Using a rich dataset detailing accident occurrences, we juxtaposed the Transformer model against traditional time series models like ARIMA and the more recent Prophet model. Additionally, through detailed analysis, we delved deep into feature importance using principal component analysis (PCA) loadings, uncovering key factors contributing to accidents. We introduce the idea of using real-time interventions with large language models (LLMs) in autonomous driving with the use of lightweight compact LLMs like LLaMA-2 and Zephyr-7b-𝛼 . Our exploration extends to the realm of multimodality, through the use of Large Language-and-Vision Assistant (LLaVA)—a bridge between visual and linguistic cues by means of a Visual Language Model (VLM)—in conjunction with deep probabilistic reasoning, enhancing the real-time responsiveness of autonomous driving systems. In this study, we elucidate the advantages of employing large multimodal models within DL and deep probabilistic programming for enhancing the performance and usability of time series forecasting and feature weight importance, particularly in a self-driving scenario. This work paves the way for safer, smarter cities, underpinned by data-driven decision making.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Sensors, Periodo: 1, Volumen: 23, Número: 22, Página inicial: 9225, Página final: .es_ES
dc.titleLLM Multimodal Traffic Accident Forecastinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsLLM; VLM; LLaVA; accident forecasting; transformers; time series analysis; PCA loadingsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
sensors-23-09225_dezarza_and_decurto.pdf4,28 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.