Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/88131
Título : | LLM-Informed Multi-Armed Bandit Strategies for Non-Stationary Environments |
Autor : | de Curtò i Díaz, Joaquim de Zarzà i Cubero, Irene Roig, Gemma Cano, Juan Carlos Manzoni, Pietro Calafate, Carlos T. |
Fecha de publicación : | 25-jun-2023 |
Resumen : | . In this paper, we introduce an innovative approach to handling the multi-armed bandit (MAB) problem in non-stationary environments, harnessing the predictive power of large language models (LLMs). With the realization that traditional bandit strategies, including epsilon-greedy and upper confidence bound (UCB), may struggle in the face of dynamic changes, we propose a strategy informed by LLMs that offers dynamic guidance on exploration versus exploitation, contingent on the current state of the bandits. We bring forward a new non-stationary bandit model with fluctuating reward distributions and illustrate how LLMs can be employed to guide the choice of bandit amid this variability. Experimental outcomes illustrate the potential of our LLM-informed strategy, demonstrating its adaptability to the fluctuating nature of the bandit problem, while maintaining competitive performance against conventional strategies. This study provides key insights into the capabilities of LLMs in enhancing decision-making processes in dynamic and uncertain scenarios. |
Descripción : | Artículos en revistas |
URI : | https://doi.org/10.3390/electronics12132814 http://hdl.handle.net/11531/88131 |
ISSN : | 2079-9292 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2024210183839127_electronics-12-02814-decurto.pdf | 671,3 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.