Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88133
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.date.accessioned2024-04-15T07:53:06Z-
dc.date.available2024-04-15T07:53:06Z-
dc.date.issued2024-04-05es_ES
dc.identifier.issn2071-1050es_ES
dc.identifier.urihttps://doi.org/10.3390/su16073041es_ES
dc.identifier.urihttp://hdl.handle.net/11531/88133-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractThe colonization of Mars poses unprecedented challenges in developing sustainable and efficient transportation systems to support inter-settlement connectivity and resource distribution. This study conducts a comprehensive evaluation of two proposed transportation systems for Martian colonies: a ground-based magnetically levitated (maglev) train and a low-orbital spaceplane. Through simulation models, we assess the energy consumption, operational and construction costs, and environmental impacts of each system. Monte Carlo simulations further provide insights into the cost variability and financial risk associated with each option over a decade. Our findings reveal that while the spaceplane system offers lower average costs and reduced financial risk, the maglev train boasts greater scalability and potential for integration with Martian infrastructural development. The maglev system, despite its higher initial cost, emerges as a strategic asset for long-term colony expansion and sustainability, highlighting the need for balanced investment in transportation technologies that align with the goals of Martian colonization. Further extending our exploration, this study introduces advanced analysis of alternative transportation technologies, including hyperloop systems, drones, and rovers, incorporating dynamic environmental modeling of Mars and reinforcement learning for autonomous navigation. In an effort to enhance the realism and complexity of our navigation simulation of Mars, we introduce several significant improvements. These enhancements focus on the inclusion of dynamic atmospheric conditions, the simulation of terrain-specific obstacles such as craters and rocks, and the introduction of a swarm intelligence approach for navigating multiple drones simultaneously. This analysis serves as a foundational framework for future research and strategic planning in Martian transportation infrastructureen-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Sustainability, Periodo: 1, Volumen: 16, Número: 7, Página inicial: 3041, Página final: .es_ES
dc.titleAnalysis of Transportation Systems for Colonies on Marses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsspace mission design; transportation systems; Marsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2024451603561_sustainability-16-03041_decurto.pdf1,63 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.