Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88134
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.contributor.authorRoig, Gemmaes-ES
dc.contributor.authorCalafate, Carlos T.es-ES
dc.date.accessioned2024-04-15T08:01:22Z-
dc.date.available2024-04-15T08:01:22Z-
dc.date.issued2024-03-27es_ES
dc.identifier.issn2624-6120es_ES
dc.identifier.urihttps://doi.org/10.3390/signals5020010es_ES
dc.identifier.urihttp://hdl.handle.net/11531/88134-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractX-ray photoelectron spectroscopy (XPS) remains a fundamental technique in materials science, offering invaluable insights into the chemical states and electronic structure of a material. However, the interpretation of XPS spectra can be complex, requiring deep expertise and often sophisticated curve-fitting methods. In this study, we present a novel approach to the analysis of XPS data, integrating the utilization of large language models (LLMs), specifically OpenAI’s GPT-3.5/4 Turbo to provide insightful guidance during the data analysis process. Working in the framework of the CIRCE-NAPP beamline at the CELLS ALBA Synchrotron facility where data are obtained using ambient pressure X-ray photoelectron spectroscopy (APXPS), we implement robust curve-fitting techniques on APXPS spectra, highlighting complex cases including overlapping peaks, diverse chemical states, and noise presence. Post curve fitting, we engage the LLM to facilitate the interpretation of the fitted parameters, leaning on its extensive training data to simulate an interaction corresponding to expert consultation. The manuscript presents also a real use case utilizing GPT-4 and Meta’s LLaMA-2 and describes the integration of the functionality into the TANGO control system. Our methodology not only offers a fresh perspective on XPS data analysis, but also introduces a new dimension of artificial intelligence (AI) integration into scientific research. It showcases the power of LLMs in enhancing the interpretative process, particularly in scenarios wherein expert knowledge may not be immediately available. Despite the inherent limitations of LLMs, their potential in the realm of materials science research is promising, opening doors to a future wherein AI assists in the transformation of raw data into meaningful scientific knowledge.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Signals, Periodo: 1, Volumen: 5, Número: 2, Página inicial: 181, Página final: 201es_ES
dc.titleLarge Language Model-Informed X-ray Photoelectron Spectroscopy Data Analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsXPS; APXPS; large language models; curve fitting; materials science; synchrotronen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
20243278276471_signals-05-00010_decurto.pdf496,6 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.