Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88197
Título : Lie algebroid connections, twisted Higgs bundles and motives of moduli spaces
Autor : Alfaya Sánchez, David
Oliveira, André
Fecha de publicación : 1-jul-2024
Resumen : 
Let ℒ =(L,[⋅,⋅],δ) be an algebraic Lie algebroid over a smooth projective curve X of genus g≥2 such that L is a line bundle whose degree is less than 2−2g. Let r and d be coprime numbers. We prove that the motivic class of the moduli space of ℒ  -connections of rank r and degree d over X does not depend on the Lie algebroid structure [⋅,⋅] and δ of ℒ and neither on the line bundle L itself, but only on the degree of L (and of course on r, d and X). In particular it is equal to the motivic class of the moduli space of Kx(D)-twisted Higgs bundles of rank r and degree d, for D any effective divisor with the appropriate degree. As a consequence, similar results (actually slightly stronger) are obtained for the corresponding E-polynomials. Some applications of these results are then deduced.
Descripción : Artículos en revistas
URI : https:doi.org10.1016j.geomphys.2024.105195
ISSN : 0393-0440
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-24-114R.pdf1,24 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.