Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/88412
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Moreno Alonso, Pedro | es-ES |
dc.contributor.author | Figuerola Ferretti Garrigues, Isabel Catalina | es-ES |
dc.contributor.author | Muñoz San Roque, Antonio | es-ES |
dc.date.accessioned | 2024-05-07T10:40:24Z | - |
dc.date.available | 2024-05-07T10:40:24Z | - |
dc.date.issued | 2024-05-01 | es_ES |
dc.identifier.issn | 1996-1073 | es_ES |
dc.identifier.uri | https:doi.org10.3390en17092182 | es_ES |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | The recent energy crisis has renewed interest in forecasting crude oil prices. This paper focuses on identifying the main drivers determining the evolution of crude oil prices and proposes a statistical learning forecasting algorithm based on regression analysis that can be used to generate future oil price scenarios. A combination of a generalized additive model with a linear transfer function with ARIMA noise is used to capture the existence of combinations of non-linear and linear relationships between selected input variables and the crude oil price. The results demonstrate that the physical market balance or fundamental is the most important metric in explaining the evolution of oil prices. The effect of the trading activity and volatility variables are significant under abnormal market conditions. We show that forecast accuracy under the proposed model supersedes benchmark specifications, including the futures prices and analysts’ forecasts. Four oil price scenarios are considered for expository purposes. | en-GB |
dc.format.mimetype | application/octet-stream | es_ES |
dc.language.iso | en-GB | es_ES |
dc.source | Revista: Energies, Periodo: 1, Volumen: online, Número: 9, Página inicial: 2182-1, Página final: 2182-29 | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | Forecasting oil prices with non-linear dynamic regression modeling | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | oil prices forecasting; Brent futures; GAM model; transfer function models; scenarios analysis | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
IIT-24-145R | 1,63 MB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.