Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88737
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDomínguez Barbero, Davides-ES
dc.contributor.authorGarcía González, Javieres-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorGarcía Cerrada, Aurelioes-ES
dc.date.accessioned2024-05-31T10:19:44Z-
dc.date.available2024-05-31T10:19:44Z-
dc.date.issued2024-08-15es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.urihttps:doi.org10.1016j.apenergy.2024.123435es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThe massive deployment of microgrids could play a significant role in achieving decarbonization of the electric sector amid the ongoing energy transition. The effective operation of these microgrids requires an Energy Management System (EMS), which establishes control set-points for all dispatchable components. EMSs can be formulated as classical optimization problems or as Partially-Observable Markov Decision Processes (POMDPs). Recently, Deep Reinforcement Learning (DRL) algorithms have been employed to solve the latter, gaining popularity in recent years. Since DRL methods promise to deal effectively with nonlinear dynamics, this paper examines the Twin-Delayed Deep Deterministic Policy Gradient (TD3) performance – a state-of-the-art method in DRL – for the EMS of a microgrid that includes nonlinear battery losses. Furthermore, the classical EMS-microgrid interaction is improved by refining the behavior of the underlying control system to obtain reliable results. The performance of this novel approach has been tested on two distinct microgrids – a residential one and a larger-scale grid – with a satisfactory outcome beyond reducing operational costs. Findings demonstrate the intrinsic potential of DRL-based algorithms for enhancing energy management and driving more efficient power systems.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Applied Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 123435-1, Página final: 123435-12es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleEnergy management of a microgrid considering nonlinear losses in batteries through Deep Reinforcement Learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsDeep Reinforcement Learning; Energy management system; Energy savings; Isolated microgrid; Nonlinear battery modelen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-165R1,45 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.