Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/88769
Título : | A Machine Learning approach for the validation and optimization of permittivity mixing rules for binary liquids |
Autor : | Monteagudo Honrubia, Miguel Herraiz Martínez, Francisco Javier Matanza Domingo, Javier |
Fecha de publicación : | 31-dic-2023 |
Editorial : | Universidad de Extremadura; Union Radio-Scientifique Internationale (Cáceres, España) |
Resumen : | This paper presents the application of Support Vector Regressor models trained with glycerin-water mixture signals from a Dielectric Resonator sensor. Each signal is labeled with a concentration considered. The performance of these models indicates which mixing rule fits the most with experimental permittivity values. Some modifications of these formulas are validated to acquire better estimations. |
Descripción : | Capítulos en libros |
URI : | http://hdl.handle.net/11531/88769 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-23-142C.pdf | 1,59 MB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.