Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88769
Título : A Machine Learning approach for the validation and optimization of permittivity mixing rules for binary liquids
Autor : Monteagudo Honrubia, Miguel
Herraiz Martínez, Francisco Javier
Matanza Domingo, Javier
Fecha de publicación : 31-dic-2023
Editorial : Universidad de Extremadura; Union Radio-Scientifique Internationale (Cáceres, España)
Resumen : 
This paper presents the application of Support Vector Regressor models trained with glycerin-water mixture signals from a Dielectric Resonator sensor. Each signal is labeled with a concentration considered. The performance of these models indicates which mixing rule fits the most with experimental permittivity values. Some modifications of these formulas are validated to acquire better estimations.
Descripción : Capítulos en libros
URI : http://hdl.handle.net/11531/88769
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-23-142C.pdf1,59 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.