Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88769
Título : A Machine Learning approach for the validation and optimization of permittivity mixing rules for binary liquids
Autor : Monteagudo Honrubia, Miguel
Herraiz Martínez, Francisco Javier
Matanza Domingo, Javier
Fecha de publicación : 31-dic-2023
Editorial : Universidad de Extremadura; Union Radio-Scientifique Internationale (Cáceres, España)
Resumen : This paper presents the application of Support Vector Regressor models trained with glycerin-water mixture signals from a Dielectric Resonator sensor. Each signal is labeled with a concentration considered. The performance of these models indicates which mixing rule fits the most with experimental permittivity values. Some modifications of these formulas are validated to acquire better estimations.
This paper presents the application of Support Vector Regressor models trained with glycerin-water mixture signals from a Dielectric Resonator sensor. Each signal is labeled with a concentration considered. The performance of these models indicates which mixing rule fits the most with experimental permittivity values. Some modifications of these formulas are validated to acquire better estimations.
Descripción : Capítulos en libros
URI : http://hdl.handle.net/11531/88769
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-23-142C.pdf1,59 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.